Ultrawideband Conical Log-Spiral Circularly Polarized Feed for Radio Astronomy

Kerlos Atia Abdalmalak[®], *Student Member, IEEE*, Gabriel Santamaría Botello[®], Sergio Llorente-Romano[®], Alejandro Rivera-Lavado[®], Jonas Flygare[®], *Student Member, IEEE*, José Antonio López Fernández, José Manuel Serna Puente, Luis Emilio García-Castillo, *Member, IEEE*, Daniel Segovia-Vargas[®], *Member, IEEE*, Miroslav Pantaleev, and Luis Enrique García-Muñoz[®]

Abstract-In order to meet the requirements of the new generation of radio telescopes, we have developed a new topology called DYQSA, which stands for DYson Quad-Spiral Array. The design exhibits dual circular polarization contrary to dual linear polarization of state-of-the-art feeds. It covers the required ultrawideband (UWB) from 2 to 14 GHz with an almost constant and real input impedance which facilitates the design of the feeding structure and the low-noise amplifiers (LNAs). Different versions are investigated for enhancing feed performance, ensuring higher aperture efficiencies and mechanical stability. The simulation results of the reflector loaded by the proposed feed show an aperture efficiency of $65\% \pm 5\%$ with a noise antenna temperature around 14 K and a system equivalent flux density (SEFD) of about 1300 Jy, both averaged over the required bandwidth at zenith. Measurements of the singleelement and the four-element feeds are presented. Comparisons with other state-of-the-art feeds are shown in terms of total aperture efficiencies, design adaptability to different reflectors, calibration signal injection, and the required number of LNAs per feed, cost, and physical volume.

Index Terms—3-D printing, circular polarization, conical antennas, dual-polarized antennas, DYson Quad-Spiral Array (DYQSA), log spiral antennas, radio astronomy, radio telescopes, reflector antenna feeds, ultrawideband (UWB) antennas, very long baseline interferometry (VLBI), VLBI2010 Global Observing System (VGOS).

Manuscript received August 9, 2018; revised October 1, 2019; accepted October 2, 2019. Date of publication October 31, 2019; date of current version March 3, 2020. This work was supported in part by CAM S2013/ICE-3004 DIFRAGEOS, in part by TEC2016-76997-C3-2-R, in part by DiDaCTIC, in part by TEC2013-47753-C3, in part by TEC2016-80386-P, and in part by Comunidad de Madrid S2018/NMT-4333 MARTINLARA-CM Projects. (Corresponding author: Kerlos Atia Abdalmalak.)

K. A. Abdalmalak is with the Signal Theory and Communication Department, Carlos III University of Madrid (UC3M), 28911 Madrid, Spain, and also with the Spain and Electrical Engineering Department, Aswan University, Aswan 81542, Egypt (e-mail: kerlos.atia@alumnos.uc3m.es).

- G. Santamaría Botello, S. Llorente-Romano, L. E. García-Castillo, D. Segovia-Vargas, and L. E. García-Muñoz are with the Signal Theory and Communication Department, Carlos III University of Madrid (UC3M), 28911 Madrid, Spain (e-mail: legarcia@ing.uc3m.es).
- A. Rivera-Lavado is with the Signal Theory and Communication Department, Carlos III University of Madrid (UC3M), 28911 Madrid, Spain, and also with the Yebes Observatory, National Geographic Institute of Spain, 19141 Yebes, Spain.
- J. Flygare is with the Onsala Space Observatory, Chalmers University of Technology, 41296 Gothenburg, Sweden.
- J. A. López Fernández and J. M. Serna Puente are with the Yebes Observatory, National Geographic Institute of Spain, 19141 Yebes, Spain.
- M. Pantaleev is with RUAG Space, 8052 Zürich, Switzerland.

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2019.2949700

I. Introduction

ERY long baseline interferometry (VLBI) [1] is one of the primary space geodesy techniques that has been used since mid-1979. Actually, it is the only technique that can realize the International Celestial Reference Frame (ICRF) [2]. It uses multiple radio telescopes located on the earth, such as the Yebes observatory one in Fig. 1.

These radio telescopes collect the very weak signals from far astronomical radio sources such as quasars, allowing the VLBI to estimate the inertial reference frame defined by such sources [3]. Simultaneously, by measuring the difference in the time of arrival of these signals to different radio telescopes, the relative positions of the antennas can be calculated. Since these antennas are fixed on the ground, their locations will track the instantaneous orientation of the earth.

The new observation system VLBI2010 Global Observing System (VGOS) [4] aims to improve VLBI data to meet the increasing demands. A broadband signal acquisition chain with fully digital electronics is needed for an expected position accuracy of about 1 mm [5]. For increasing sensitivity, VGOS requires a dual circularly polarized feed that covers an ultrawideband (UWB) frequency range from 2 to 14 GHz with no need to compensate for the phase center changes via mechanical movement. The feed also needs to enable the reflector to have a system equivalent flux density (SEFD) below 2500 Jy [6] for accomplishing acceptable signal to noise ratio (SNR) values with reasonable integration times. This can be achieved by maximizing the total aperture efficiency and minimizing the noise contribution of the feed to the total system noise as will be discussed in Section II.

Two main feed solutions are currently under consideration for the next generation of radio telescopes for VGOS applications: the quadruple-ridged flared horn (QRFH) [7] developed at the California Institute of Technology and the Eleven feed [8], [9] developed at Chalmers University of Technology. These two feeds have some deficiencies to be overcome [10], [11] as will be pointed out in Section V.

In this article, a new feed for the VGOS radio telescope is presented. The rest of this article is organized as follows: Section II discusses the reflector geometry with the calculations for SEFD and its different noise temperatures. Furthermore, this section analyzes the optimum performance of the VGOS radio telescope fed by an ideal Gaussian beam to have an upper limit estimation of the total system efficiency.

0018-926X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

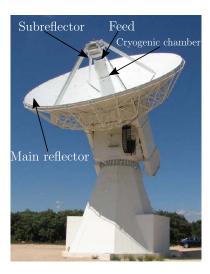


Fig. 1. VGOS 13 m radio telescope in Yebes, Spain.

The proposed topology including the design procedure to overcome the manufacturing challenges at such high frequencies of VGOS in addition to the full-wave electromagnetic simulation results for the feed element is discussed in detail in Section III. Section IV shows the results of an isolated feed consisting of an array of spirals that enables dual circular polarization. Then, to prove the suitability of the proposed solution as a feed for VGOS radio telescope, an analysis of the reflector fed by DYson Quad-Spiral Array (DYQSA) is presented in Section V. This analysis includes five main parameters: total radiation patterns, noise temperatures, directivity, aperture efficiency, and SEFD. Section VI presents comparisons between the proposed feed and the state-of-the-art ones. The measurement results of both the single element and the array feed are also shown in this section. Finally, conclusions are given in Section VII.

II. REFLECTOR ANTENNA

A. Reflector Antenna Geometry and Calculations

The main parameters of the reflector are summarized in Table I with a representation of its geometry in Fig. 2. It consists of one main parabolic mirror and a ring-focus subreflector. As can be seen from Table I, the reflector has a diameter of 13.2 m, while most of existing VLBI reflectors have significant larger diameters like Effelsberg radio telescope in Germany which has a diameter of 100 m. This compact size will significantly reduce the overall cost of the system.

Moreover, such small reflectors can provide fast-slew speeds greater than 360 °/min allowing a larger number of observations, thus increasing the precision of the system. The feed is placed on the focal point of the reflector geometry, where it is cooled down to 15 K inside the cryogenic receiver. The SNR of a radio telescope system based on continuous observations can be calculated using the following equation:

$$SNR = \frac{S\sqrt{tB}}{SEFD} \tag{1}$$

TABLE I
MAIN PARAMETERS OF THE REFLECTOR

Parameter	Symbol	Value
Main reflector diameter	D_m	$13200\mathrm{mm}$
Main reflector focal length	F_m	$3700\mathrm{mm}$
Subreflector diameter	D_s	$1550\mathrm{mm}$
Half subtended angle	θ_e	$65\deg$
Parabola hole radius	$ ho_{ m offset}$	$740\mathrm{mm}$
Secondary focus position	L_p	$3611.662\mathrm{mm}$
Secondary focus to sub vertex	L_v	$302.784\mathrm{mm}$
Sub vertex position	L_s	3914.446 mm
Half flare main angle	Ψ	$73.839\deg$
Foci line tilt	φ	$83.193\deg$

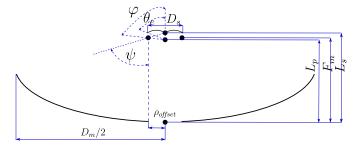


Fig. 2. Geometry of the VGOS reflector.

where S is the flux density coming from the observed radio source in Jy, while 1 Jy = 10^{-26} W m⁻² Hz⁻¹, t is the integration time in seconds (s), B is the available bandwidth of the receiver system in hertz (Hz), and SEFD includes the combined effect of antenna and all other noise sources into one parameter. Equation (1) shows that for a fixed incoming flux density and integration time, the SNR will be proportional to the square root of the bandwidth. Therefore, the UWB coverage for the receiver system (and, therefore, its feed) is critical. Also, for a fixed SNR, a lower SEFD yields a lower integration time. The SEFD can be calculated as

$$SEFD = \frac{2kT_{\text{sys}}}{A_{\text{eff}}} \tag{2}$$

where k is the Boltzmann's constant, and $A_{\rm eff}$ is the effective area of the reflector antenna and can be calculated from the total aperture efficiency of the reflector ($\eta_{\rm tot}$) as $A_{\rm eff} = \eta_{\rm tot} A_{\rm phy}$, where $A_{\rm phy} = \pi (D_m/2)^2$ is the physical area of the reflector. Finally, $T_{\rm sys}$ is the equivalent system noise temperature which can be calculated as

$$T_{\text{svs}} = \eta_{\text{rad}} T_A + (1 - \eta_{\text{rad}}) T_{\text{phv}} + T_{\text{REC}}$$
 (3)

where $\eta_{\rm rad}$ is the antenna radiation efficiency, T_A is the antenna noise temperature including noise picked-up from the sky and the spill-over noise, $T_{\rm phy}$ is the physical temperature of the antenna, $(1-\eta_{\rm rad})$ $T_{\rm phy}$ is the noise temperature contribution from the feed's ohmic losses, and $T_{\rm REC}$ is the noise temperature of the complete receiver chain including the receiver components such as the cryogenic low-noise

amplifiers (LNAs), coaxial cables, and calibration couplers. Using (3), the SEFD in (2) can be calculated as

SEFD =
$$\frac{8k[\eta_{\text{rad}}T_A + (1 - \eta_{\text{rad}})T_{\text{phy}} + T_{\text{REC}}]}{\pi D_m^2 \eta_{\text{tot}}}.$$
 (4)

The above equation demonstrates the dependence of the SEFD (and, hence, SNR) on the feed selection which strongly affects both aperture efficiency and noise temperature of the reflector antenna. The calculation of the antenna noise temperature can be performed following [12] as:

$$T_A = \frac{\int_0^{2\pi} \int_0^{\pi} F(\theta, \phi, f) T_b(\theta, \phi, f) \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^{\pi} F(\theta, \phi, f) \sin \theta \, d\theta \, d\phi}$$
(5)

where $F(\theta, \phi, f)$ is the total power pattern of the reflector antenna which can be calculated using a combination of physical optics (PO) and physical theory of diffraction (PTD) with the simulation software TICRA GRASP [13] after exciting it by the proper feed. Parameters θ , ϕ , and f are the angle from the zenith (which equals to 90° - elevation angle), the azimuth angle, and the frequency, respectively. $T_b(\theta, \phi, f)$ is the surrounding brightness temperature seen by the radio telescope calculated following [14] using the general brightness temperature model of the Square Kilometer Array (SKA) [15]. Once the noise temperature is calculated from (5), the spill-over noise temperature $T_{\rm sp}$ can be drawn from $T_A = T_{\rm sky} + T_{\rm sp}$ [16].

B. Reflector Antenna Fed by an Ideal Gaussian Feed

For comparison purposes through this article, it is convenient to analyze the radiation patterns obtained for the radio telescope using an ideal Gaussian feed system. With this analysis, it is possible to have an upper limit estimation of the total aperture efficiency and directivity of the reflector system which are the key parameters for designing the proper feed [17]. To do this, an ideal Gaussian beam pattern is used as a feed. GRASP software has been used to analyze the whole reflector system at the desired range of frequencies from 2 up to 14 GHz. For simplicity, the results at 2, 8, and 14 GHz are shown in Fig. 3. It shows perfectly symmetric radiation patterns as it is expected from the excitation with such symmetric beam. The directivity and aperture efficiency versus frequency of the reflector using this ideal Gaussian feed are shown in Fig. 4. It can be concluded that the expected directivity of the radio telescope varies from 47 to 65 dB. Also, Fig. 4 shows that the reflector has an almost flat efficiency of about 80% with a small degradation at lower frequencies.

III. CONICAL LOG-SPIRAL ANTENNA

The proposed solution is based on the self-complementary log-spiral antenna rounding a conical shape as shown in Fig. 5. This conical shape will provide unidirectional radiation patterns instead of the bidirectional ones typical for the planar spirals in addition to avoid the 3 dB loss characteristic in case of using the absorbing cavities. Recently, other solutions have included self-complementary structures able to cover large bandwidths such as the inverted conical sinuous antenna [18], [19] which is based on the projection of a sinuous pattern onto

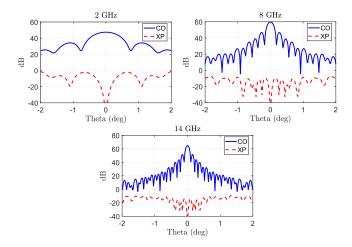


Fig. 3. Radiation patterns of the reflector fed by an ideal Gaussian feed.

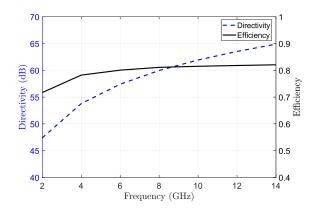


Fig. 4. Directivity and aperture efficiency of the reflector fed by an ideal Gaussian feed.

a cone placed above a ground plane. Although this solution exhibits stable radiation patterns, an almost fixed phase center, it has three main drawbacks for the application concerning this article. Firstly, it provides linear polarizations so additional circuits or digital postprocessing techniques have to be added for linear-to-circular polarization conversion which has several disadvantages as will be discussed later in this section. Secondly, the addition of the ground plane affects its selfcomplementary nature and produces a frequency-dependent impedance. For example, in [18], the imaginary part of the impedance varies between 0 and -300Ω over a relatively small bandwidth from 1 to 3 GHz. This significantly increases the complexity of the LNA design and integration, especially for the required UWB range. Finally, the higher complexity of the manufacturing and assembly process for operation up to 14 GHz. The situation gets worse as the sinuous antenna has to be over-designed at the higher frequency to have stable properties at the high-frequency end [20]. Ongoing research is focusing on the optimization of the shape of the sinuous antenna and its manufacturing techniques to allow operation at higher frequencies [21].

The log-spiral antenna has four main geometrical parameters to control its electromagnetic features: the smallest diameter (d), the largest one (D), the spiral angle (α) , and the

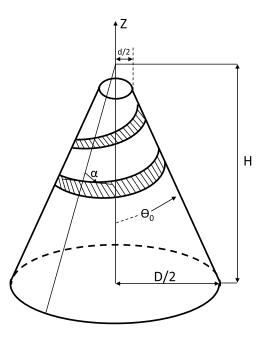


Fig. 5. Geometry of the Dyson conical log-spiral antenna.

conical angle (θ) . Even though the conical log-spiral antenna has been proposed in the 20th century [22], to the best of the authors' knowledge, no prototypes have been shown at the high frequencies required for VGOS (up to 14 GHz). This is due to the high manufacturing complexity and the stringent tolerance levels at the apex part. Fig. 6 presents a systematic procedure for overcoming these design challenges. The design procedure mainly consists of two main stages: firstly, the conical and spiral angles are selected. It is worth noting that lower values of the conical angles (θ) are more reasonable as they imply larger space between the arms of the spiral, which will facilitate the fabrication process. However, it will be shown that for our application (which requires high-frequency coverage), too small conical angles are not recommended as this will require a very small diameter at the top part of the cone (d) to cover up to 14 GHz.

Thus, the selection of the proper spiral angle (α) will be a tradeoff between the separation distance between the turns and the smallest diameter of the cone. Both represent the main fabrication challenges of this topology. The relation between beam widths and approximate directivity versus spiral angle (α) can be found in [23]. These relations are estimated for different conical angles (θ) . After several optimization rounds, considering the requirements of VGOS, we select $\alpha=85^{\circ}$ which corresponds with a conical angle $\theta=10^{\circ}$

The second stage of the design process involves the selection of the smallest (d) and the largest diameters (D) of the cone. These two parameters control the maximum and the minimum working frequencies. From the study of the relation between the smallest radius (d/2) versus the largest one (D/2) for different spiral (α) and conical (θ) angles [23], it can be observed that the smallest radius (d/2) is proportional to the conical angle (θ) . This confirms the previous statement that a low conical angle will result in a small radius at the vertex of the cone, which will require a more complex fabrication

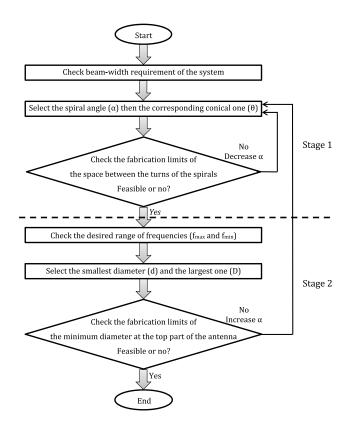


Fig. 6. Flowchart of the design procedure of the conical log-spiral antenna.

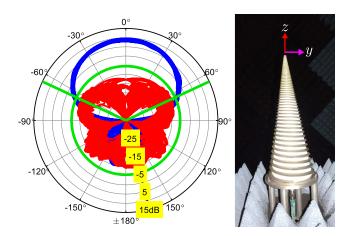


Fig. 7. Radiation patterns of the Dyson element.

process to cover the desired higher band. Considering VGOS system that requires covering a bandwidth from 2 up to 14 GHz, d = 3.2 mm and D = 60 mm are good candidates.

The simulated radiation patterns of this log-spiral antenna using HFSS [24] are shown in Fig. 7 for the frequencies from 2 to 14 GHz in steps of 2 GHz and for different cut planes from $\phi = 0^{\circ}$ up to $\phi = 180^{\circ}$ in steps of 15°. The blue and the red lines represent the circular copolar and the circular cross-polar polarizations, respectively. The green lines show the half subtended angle from the focus of the subreflector (θ_e) while the green circle represents the elliptical polarization with an axial ratio of 3 dB. Fig. 7 evidences the revolution symmetry of the radiation patterns at all frequencies with a

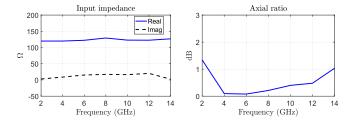


Fig. 8. Input impedance and axial ratio of the Dyson element.

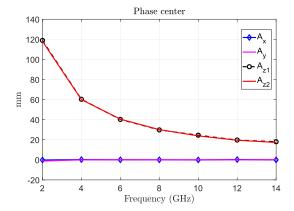


Fig. 9. Phase center estimation of the Dyson element.

gain around 10 dBi and Co/Xp-ratio on axis greater than 20 dB. Fig. 8 presents the real and imaginary parts of the input impedance of the antenna in solid-blue and dashedgreen, respectively. As expected for this self-complementary topology, the impedance is constant and almost real over the required frequency range. This is one of the main strong points of this solution as it will simplify the design of the LNA connected to the feed. Fig. 8 also shows the axial ratio which is below 1.4 dB in the required band.

The phase center frequency dependence along the three axes estimated following [25] is presented in Fig. 9. A_x , A_y , and A_z are the x, y, and z coordinates of the phase center position, respectively. The origin of the coordinate system for the phase center estimation is placed on the virtual apex of the cone (as in Fig. 7). A_{z1} and A_{z2} are the phase center calculated using two orthogonal cuts $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$, respectively. All the phase centers have been calculated in the range of $\pm \theta_e$. Although the phase center is strongly shifted at lower frequencies which in general affects the total feed efficiency [26], it is possible to find an optimum position of the feed to get reasonable efficiency values as will be shown later in this section. Also, in the complete solution (considering the two circular polarizations), this issue is totally solved as it will be presented in Section IV.

The total efficiency of the whole reflector using a specific feed can be factorized into four main subefficiencies which are spillover (η_{sp}) , polarization (η_{pol}) , illumination (η_{ill}) , and phase (η_{ph}) subefficiencies. With such factorization, one may get an idea of the contribution of each subefficiency on the overall performance of the feed. These subefficiencies can be estimated by the integration of the feed's radiation patterns following [27], once they are calculated, the total aperture efficiency of the reflector using this feed can be calculated

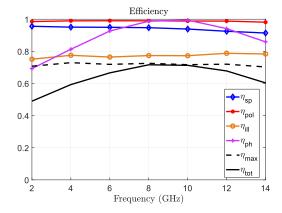


Fig. 10. Feed efficiency of the radio telescope based on the simulated radiation patterns of Dyson element.

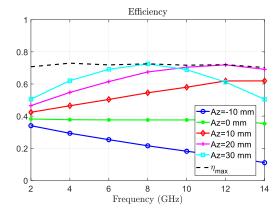


Fig. 11. Effect of the feed position on the aperture efficiencies.

as $\eta_{\text{tot}} = \eta_{\text{sp}}\eta_{\text{pol}}\eta_{\text{ill}}\eta_{\text{ph}}$. The subefficiencies and the total efficiency of the antenna when the Dyson element is used as the feed for the radio telescope are shown in Fig. 10. The dotted-black line is the total efficiency excluding the phase efficiency (which critically depends on the location of the feed). The frequency-averaged total efficiency has been maximized by studying its strong dependence on the displacement of the feed along the z-axis as shown in Fig. 11. The optimum performance is achieved when the virtual apex of the antenna is placed at 26 mm beyond the focus of the system.

The previous results demonstrate that the proposed antenna can be used as a broadband feed for the VGOS receiver. It exhibits circular polarization contrary to the linear polarization as the state-of-the-art solutions. This could be potentially very useful as circular polarization is handled more simply for VLBI applications. Although circular polarization receivers can be built using linear-polarization feeds by the addition of linear-to-circular polarization conversion circuits like quarter-wave plates or other equivalent devices. This yields some drawbacks such as lower polarization purity and narrower effective bandwidth [28]. These are particularly relevant in the case of broadband receivers as most of these devices can provide a perfect 90° phase shift at only one or some frequencies, yielding phase errors away from these frequencies [29].

Another approach for the conversion from the linear polarization to the circular one is to reconstitute the circular

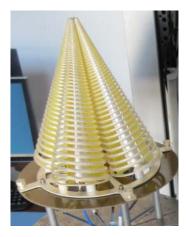


Fig. 12. Manufactured dielectric-free DYQSA version.

polarization by recombining the signals after digitization. However, it still needs a good calibration system to compensate phase and amplitude differences in the two paths which will increase the system complexity. On the other hand, for the proposed solution, we are providing a directly circular polarization feed without the need for either additional analog hardware or digital software. Moreover, the direct use of linear-polarization receivers will cause the loss of coherence between the different wide-separated stations in the network. This is because the linear dipoles will not remain parallel to each other, requiring tricky parallactic angle corrections compared to the simple phase correction in circular polarization.

IV. DYQSA SOLUTION

To achieve dual polarization as required by VGOS specifications, we use the implementation of an array with four elements of conical log-spiral antennas. In this design, each pair of antennas is devoted to a given polarization: one pair for the right-hand circular polarization (RHCP) and the other one for left-hand circular polarization (LHCP) as shown in Fig. 12. The reason why four antennas are used instead of two (one per polarization) is that in the latter case, the total radiation pattern of the radio telescope will be squinted: one polarization will be squinted to the left and the opposite for the other polarization, since the focus of the system is located close to the subreflector mirror. This effect is corrected by using two antennas per polarization.

The design has four differential ports that require eight single-ended LNAs (four per polarization). The addition of broadband baluns between the antennas and the LNAs will decrease the number of required single-ended LNAs from eight to four (two per polarization). An extensive study has been done to design the balun for these balanced antennas and its proper position. The first method is placing each balun inside its corresponding spiral antenna and shielding it with a metallic cone as shown in Fig. 12.

Although this excitation method is straightforward in its implementation, there is a high mutual coupling effect between the four metallic shields which significantly affects the radiation pattern stability over the required bandwidth. Thus, to enhance the electric properties of the system and reduce

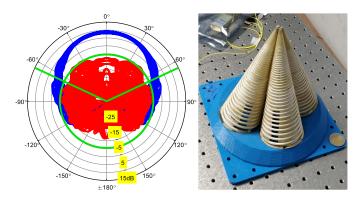


Fig. 13. Manufactured dielectric-filled DYQSA and its simulated radiation patterns.

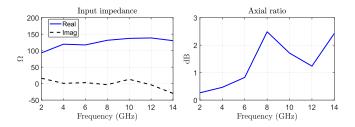


Fig. 14. Input impedance and axial ratio of the DYQSA feed.

the effects of these metallic shielding, an updated version has been proposed. In this version, the four individual baluns have been replaced with one system of four baluns connected and introduced inside one metallic shielding through the center of the four spirals system. The balun is connected to the spiral using two bow-tie metallic patches at the apex of each spiral cone. The detailed discussion of this baluns system has been reported in [30]. In spite of enhancing the electric properties of the solution in this new configuration by reducing the coupling between the metallic shielding and the antennas [31], the design still faces some mechanical issues arising from the low vibration tolerances of the system especially at the top part of the antenna. This affects the stability of the system and could cause short circuit problems at the element apices [32]. To overcome these mechanical issues, a new dielectricfilled DYQSA has been proposed.

In this third version, instead of manufacturing the antennas with a dielectric-free structure (as in Fig. 12), a low-permittivity durable polyamide (nylon) material has been used for supporting the structure as shown in Fig. 13. Four thin supporting dielectric cones with a thickness of 1 mm are added as a support structure. This addition significantly enhances the robustness of the system against vibrations and increases the design stability. The simulated radiation patterns of this structure are presented in Fig. 13 covering the required bandwidth for different ϕ planes from 0° to 180° in steps of 15°. Fig. 13 shows a high level of symmetry in the radiation patterns over the whole band. The maximum Co/Xp-ratio is above 15 dB with a constant gain of around 10 dBi.

Impedance and axial ratio of the array are presented in Fig. 14. These results confirm our predictions from the results of the single element with small deviations at higher

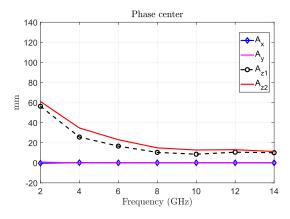


Fig. 15. Phase center estimation (in mm) of the DYQSA feed.

frequencies. Fig. 15 shows the phase center estimation of the whole array when the origin of coordinates is placed on the virtual apex of the four cones. Although the phase center is not totally constant in the whole band, its variation in the 4–14 GHz band is around 2 cm and 3 cm in the 2–4 GHz band. The overall variation is significantly lower than with the single Dyson element. In addition, in Section V, it will be shown that these small variations have negligible effects on the overall feed efficiency of the system.

V. Analysis of the Reflector Antenna Fed by DYQSA Solution

This section is dedicated to the results of the radiotelescope when using the four-element array as its feed. As presented in Section III, there is an optimum position of the feed. For this array system, the maximum total efficiency averaged over the frequency band (the optimum performance) is achieved when the apex of the array is placed 14 mm beyond the focus of the system. Radiation patterns of the radio telescope have been analyzed using GRASP software by introducing the radiation patterns of the array from HFSS as the feed of the radio telescope.

As it is common when designing feeds for reflectors such as in the case of QRFH [7] or Eleven [9], losses due to blockage and support structures are not included in the calculations as they are issues of the reflector itself instead of the feed. For simplicity, the results for 2, 8, and 14 GHz are shown in Fig. 16 for three cuts in planes $\phi = 0^{\circ}$, 45°, and 90°. Fig. 16 demonstrates that the radio telescope fed by DYQSA has a high level of symmetry in its radiation patterns over the required frequency range with a minimum Co/Xp-ratio level of 15 dB. Using the previous radiation patterns of the reflector in (5), the antenna noise temperature (T_A) along with the spill-over noise one $(T_{\rm sp})$ is shown in Fig. 17. The calculations have been done for two different cases. Firstly, at zenith $\theta = 0^{\circ}$ (corresponding to an elevation angle of 90°) when the reflector antenna is pointing vertically directly toward the sky and secondly, at a zenith angle of 45°. The average spill-over noise and antenna noise temperatures over the whole band are 6 and 14 K at zenith, respectively. These average values increase by about 7 K at the lower elevation ($\theta = 45^{\circ}$).

Fig. 16. Radiation patterns of the reflector fed by DYQSA for three cut planes $\phi=0^\circ, 45^\circ,$ and $90^\circ.$

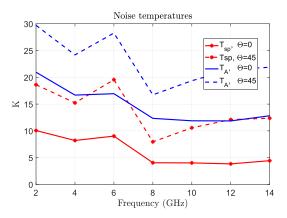


Fig. 17. Spill-over and antenna noise temperatures for the reflector fed by DYQSA.

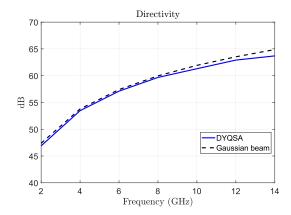


Fig. 18. Estimated directivity of the reflector from the GRASP results.

The directivity of the system versus the frequency has been estimated using GRASP and is plotted in Fig. 18. Considering all the previous results and the results presented in Section III, it can be concluded that the performance of the DYQSA is comparable with the optimum performance obtained using the ideal Gaussian feed (i.e., the difference in the directivity is below 1.2 dB). The aperture efficiencies for the radio telescope are shown in Fig. 19. It shows an almost constant total efficiency of around 65%. As expected from the phase

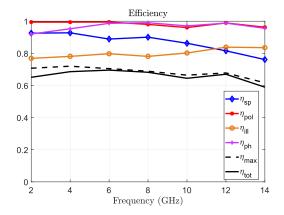


Fig. 19. Feed efficiency of the reflector based on the simulated radiation patterns of DYQSA.

center estimation of the array in Fig. 15, these variations have negligible effects on the total feed efficiency (the average phase efficiency over the required bandwidth is 97%).

The exact receiver noise temperature T_{REC} has not been measured yet as it needs further processing including the addition of the amplifiers and cooling down the receiver. However, it can be calculated from combining the noise temperatures for each source. Firstly, the cryogenic LNA proposed by Yebes observatory for VGOS reflectors has an almost flat measured noise temperature of 7.5 K in the operation band from 2 to 14 GHz [30]. Secondly, following the estimations that have been done for QRFH [7], the other noise sources (a calibration coupler and coaxial cables) will have a sum of noise temperatures of about 13 K, thus, the expected T_{REC} will be around 20 K. The noise contribution due to ohmic losses is 7 K per 0.1 dB loss at room temperature but as the feed will be cooled down to 15 K, this noise temperature will be smaller by a factor of 20 to be around 0.3 K per 0.1 dB loss. For DYQSA feed, the simulated radiation efficiency is around 0.9 (loss is less than 0.5 dB), which corresponds to 1.5 K of ohmic losses noise contribution. Hence, under the cryogenic cooling and for this radiation efficiency, the system noise temperature in (3) can be approximated as $T_{\rm sys} \approx T_A + T_{\rm REC}$.

Fig. 20 presents the estimated SEFD of VGOS radio telescope based on DYQSA feed. An SEFD below 1800 Jy with an average of about 1300 Jy over the VGOS required bandwidth at zenith is shown. At a zenith angle of 45°, the average SEFD value is 1600 Jy which agrees with VGOS requirements. All these results demonstrate that the DYQSA solution is a potential feed candidate for VGOS radio telescopes.

VI. COMPARISON WITH THE STATE-OF-THE-ART SOLUTIONS AND MEASUREMENTS

A. Calibration Signal Injection

For comparison purposes, the calibration of the radio telescope is important. Generally, there are three main methods of calibration signal injection for VGOS feeds. Firstly, radiating the signal directly into the feed via a small transmitting probe. Secondly, coupling it into the signal chain after the LNA or finally injecting it before the LNA (between the feed and LNA). However, due to the combining network and multiple

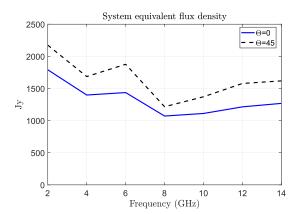


Fig. 20. Estimated SEFD of the reflector fed by DYQSA.

LNAs needed for the DYQSA feed, it is not practical to use the last method. The Eleven feed solution [9] faces the same issue too.

B. LNAs Needed for the Feed and Feed Cost

To avoid noise degradation from the combining network, the LNAs can be directly connected to the balun. This will result in a total number of two LNAs per polarization or four LNAs per DYQSA feed which is half of the number of LNAs required by the Eleven feed. Also, the LNAs need to be matched within specified limits, otherwise, a degradation in the performance of the feed will occur. Even though the QRFH does not require any combining network (it has only one LNA per polarization), it still has degradation in the performance caused by the non-constant radiation patterns. Regarding the cost of the feeds, although DYQSA has the lowest cost (€8k) compared to the \$33k and \$15k of Eleven and QRFH feeds, respectively [33], the low number of LNAs needed for QRFH (two per feed) makes it the lowest cost solution. Additionally, QRFH exhibits the lowest fabrication/assembly complexities. The overall cost of DYQSA, including the LNAs, is around 15% higher than QRFH (the cost of one LNA is around \$5k) and less than half the cost of Eleven feed which has the highest number of LNAs per feed.

C. Design Adaptability of the Feed

Another key parameter for the comparison purposes is the adaptation easiness of the design, which ensures that the feed can be easily reoptimized to be used for several radio astronomy reflectors. While the QRFH design can be optimized to match different antenna optics, the Eleven feed has a fixed edge taper level of -10 dB at around 65° from its axis. Actually, the performance of the Eleven feed does not significantly degrade with small changes in the antenna optics. However, in the case of legacy International VLBI Service (IVS), antennas require an edge taper level of -10 dB at angles which are significantly different from 65°, the adaptability of the QRFH design will likely lead to better performance. From this point of view, DYQSA has the total ability to be reconfigurable for a wide range of F_m/D_m ratios just like the QRFH as it has been shown in the design

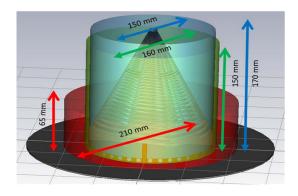


Fig. 21. Volumetric comparison of DYQSA (blue), Eleven (red), and QRFH (green) feed systems.

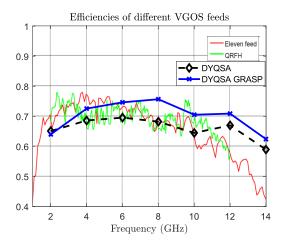


Fig. 22. Comparison of the efficiency of different feeds.

procedure of Section III that the beamwidth can be easily adjusted according to the requirements of the application.

D. Feed Volume

A volumetric comparison between DYQSA (in blue), Eleven (in red), and QRFH (in green) is shown in Fig. 21. This comparison shows that the size of the DYQSA is similar to that of the QRFH, and both have narrower–longer dimensions compared to the Eleven feed.

E. Feed Aperture Efficiency

A comparison between the three feeds from the aperture efficiency point of view is presented in Fig. 22. For the DYQSA feed, the efficiencies have been calculated using two different approaches. Firstly, using the closed-form equations following [27] in dotted-black line (the total efficiency in Fig. 19) and secondly using GRASP software in solid-blue line. For comparison purposes, the aperture efficiencies of both Eleven and QRFH feeds as they would perform in the VGOS reflector system [10], [33] are also shown in Fig. 22. The feed efficiency of the Eleven solution has been calculated using GRASP software at Onsala observatory while the QRFH efficiency calculation has been done using PO software at NASA Jet Propulsion Laboratory (JPL). The version of QRFH used in this comparison was designed for the frequency range

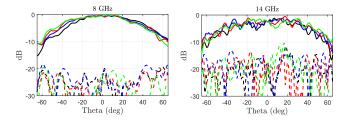


Fig. 23. Dyson element measured radiation patterns at 8 and 14 GHz.

from 2 to 12 GHz so there are no available data for the comparison up to 14 GHz.

Fig. 22 shows that DYQSA exhibits better performance than the other two solutions at higher frequencies, which show a linear degradation. Some recent work has been done for other different versions of QRFH feed for enhancing its properties and getting a flat performance over a wide bandwidth, for example, by adding a dielectric spear [34]. However, it still has not been tested for the high frequencies required by VGOS. On the other hand, DYQSA shows a flat behavior which demonstrates that the phase center shifting is compensated. It can be seen from the estimation of the phase center (see Section IV) as well as in the efficiency calculated in this section that DYQSA shows an improvement in the global efficiency of the system due to the stability of the phase center. Also, from a general system perspective, and after connecting a feed to the LNAs, usually the SEFD suffers from an increase in the receiver noise temperatures at high frequencies. From that perspective, the constant efficiency of the proposed solution at high frequencies is an attractive characteristic.

F. Single-Element and Array Measurements

The antenna has been manufactured in titanium following a 3-D printing growing technique [35] which becomes a promising technique especially for antennas at such frequency ranges where the sensitivity of the fabrication is critical [36]. Then, the solution is silver plated at the end of the process. In Figs. 23 and 24, the measured radiation patterns of a single-Dyson element and DYQSA feeds are plotted for different frequency points and for four different ϕ cuts. Both circular polarization components are plotted: RHCP (co-pol) in solid lines and LHCP (cross-pol) in dashed ones.

The measurements for the single element have been done from 7 to 14 GHz only as a proof of the concept. Although the single element provides a high level of symmetry between the cuts in its measured radiation patterns with Co/Xp-ratio levels on axis greater than 15 dB, there is a reduction in the performance for the array version. The rest of this section is dedicated to analyzing the effect of this reduction on the whole reflector system and the possible causes of it.

Fig. 25 presents the radiation patterns of the VGOS radio telescope when the DYQSA is used as the feed for cut planes $\phi = 0^{\circ}$, 45°, and 90°. They indicate the revolution symmetry of the radiation patterns with the Co/Xp-ratio level above 15 dB for the lower band and above 30 dB for the higher one which demonstrates that the small degradation of DYQSA radiation patterns does not significantly affect the

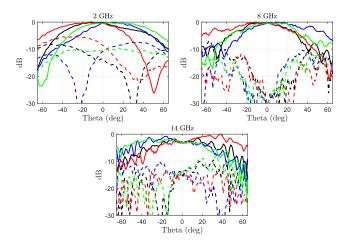


Fig. 24. DYQSA measured radiation patterns at 2, 8, and 14 GHz.

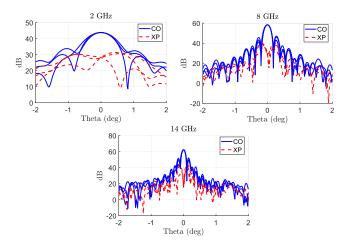


Fig. 25. Radiation patterns of the reflector based on the measured results of DYQSA feed (the ones on Fig. 24).

overall radiation patterns of the reflector system. The feed efficiency estimation based on the measured radiation patterns is presented in Fig. 26, showing an almost flat performance. The total aperture efficiency is about 70% for the Dyson antenna for the band from 7 to 14 GHz which is in excellent agreement with the simulated results. However, for DYQSA array, the average drops to about 50% over the required bandwidth contrary to the 65% obtained from the simulations.

Following the measured results of the array element which show a great matching with the simulated ones, the degradation for DYQSA may be due to either the several assembly and disassembly processes for the same spirals in different versions and/or due to some misalignment issues. Especially that the misalignments between the elements will cause a phase mismatching between one turn of the spiral and its corresponding turn in the other antenna for the same polarization and this will affect the symmetry of the patterns. Further investigations need to be done in order to elucidate the reasons behind this degradation with ensuring higher alignment accuracy. Also, the antenna can be over-designed at the lower band (increase the largest diameter) to enhance the behavior of the feed at the

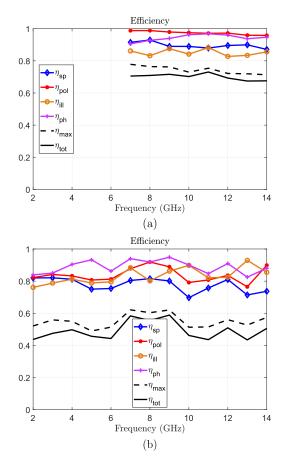


Fig. 26. Feed efficiency of the reflector based on the measured radiation patterns of (a) Dyson element and (b) DYQSA feed.

lower frequencies. This will only increase the feed size and not its manufacturing/alignment complexity. Nevertheless, it is worth noting that these current results outperform the reported measurement results of the state-of-the-art feeds, especially at higher frequencies. For example, in the Eleven feed [9], the estimated efficiency based on the measured radiation patterns drops to about 30% at the higher frequencies.

VII. CONCLUSION

A new solution for covering the VGOS requirements has been proposed. It is based on a four-element array of conical log-spiral antennas. The proposed feed is adaptable to different antenna optics just like QRFH solution. It also provides two new attractive characteristics: dual circular polarization (contrary to dual linear polarization present in the state-of-theart feeds) and the constant and almost real input impedance of the antenna due to its self-complementary geometry, which is beneficial for the LNA design. At a zenith angle of 45°, the proposed DYQSA solution is estimated to provide an average spill-over and antenna noise temperatures of about 13 and 22 K with an SEFD of about 1600 Jy and about 1300 Jy when the radio telescope points near the zenith respectively. The total feed efficiencies of the proposed design and the two state-of-the-art solutions computed from the simulated radiation patterns have been compared. This comparison

demonstrates the frequency-independent behavior of DYQSA with an efficiency of 65%±5%, contrary to the linear reduction in the efficiency of the other two solutions at high frequencies. The measurement results have a good level of agreement with the simulated ones, with an appreciable reduction in the DYQSA efficiency results. The average aperture efficiencies based on the measured radiation patterns for Dyson element are 70% for the frequencies range from 7 to 14 GHz and 50% averaged over the entire band from 2 to 14 GHz for DYQSA feed. These results show the potential of the DYQSA solution as a new VGOS feed.

ACKNOWLEDGMENT

The authors would like to thank Instituto Nacional de Técnica Aeroespacial (INTA) Group for their help in the measurements and Prof. Z. Popovic at the University of Colorado for her valuable discussion and comments. They would also like to thank the anonymous reviewers and associate editor for the constructive comments/suggestions.

REFERENCES

- [1] H. Schuh and D. Behrend, "VLBI: A fascinating technique for geodesy and astrometry," *J. Geodyn.*, vol. 61, pp. 68–80, Oct. 2012.
- [2] A. L. Fey et al., "The second realization of the international celestial reference frame by very long baseline interferometry," Astronomical J., vol. 150, no. 2, p. 58, Jul. 2015.
 [3] C. Ma et al., "The international celestial reference frame as realized
- [3] C. Ma et al., "The international celestial reference frame as realized by very long baseline interferometry," Astronomical J., vol. 116, no. 1, pp. 516–546, Jul. 1998.
- [4] W. T. Petrachenko, A. E. Niell, B. E. Corey, D. Behrend, H. Schuh, and J. Wresnik, "VLBI2010: Next generation VLBI system for geodesy and astrometry," in *Geodesy for Planet Earth* (International Association of Geodesy Symposia), vol. 136. Berlin, Germany: Springer, 2012, pp. 999–1005.
- [5] H. Hase, D. Behrend, C. Ma, B. Petrachenko, H. Schuh, and A. Whitney, "The emerging VGOS network of the IVS," in *Proc. IVS Gen. Meeting*, Madrid, Spain, Sep. 2012, pp. 8–12.
- [6] B. Petrachenko, "Review of VLBI2010 concept and general specifications," in *Proc. IVS TecSpec Workshop*, Bad Kötzting, Germany, 2012, pp. 1–43.
- [7] A. Akgiray, S. Weinreb, W. A. Imbriale, and C. Beaudoin, "Circular quadruple-ridged flared horn achieving near-constant beamwidth over multioctave bandwidth: Design and measurements," *IEEE Trans. Anten*nas Propag., vol. 61, no. 3, pp. 1099–1108, Mar. 2013.
- [8] J. Yang, M. Pantaleev, P.-S. Kildal, and L. Helldner, "Design of compact dual-polarized 1.2–10 GHz eleven feed for decade bandwidth radio telescopes," *IEEE Trans. Antennas Propag.*, vol. 60, no. 5, pp. 2210–2218, May 2012.
- [9] J. Yang et al., "Cryogenic 2–13 GHz eleven feed for reflector antennas in future wideband radio telescopes," *IEEE Trans. Antennas Propag.*, vol. 59, no. 6, pp. 1918–1934, Jun. 2011.
- [10] B. Petrachenko, "VLBI2010 feed comparison," Int. VLBI Service Geodesy Astrometry, Greenbelt, MD, USA, Tech. Rep. NASA/TP-2013-217511, 2013, pp. 48–51.
- [11] C. J. Beaudoin et al., "A cost and complexity survey on emerging technologies for the VGOS," in Proc. Int. VLBI Service Geodesy Astrometry Gen. Meeting VGOS, New VLBI Netw., D. Behrend, K. D. Baver, and L. Kyla, Ed., Beijing, China, 2014, pp. 53–59.
- [12] T. Y. Otoshi, Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems. Norwood, MA, USA: Artech House, 2008.
- [13] TICRA Engineering Consultants, GRASP. Accessed: Mar. 20, 2019. [Online]. Available: https://www.ticra.com/
- [14] J. Flygare, M. Pantaleev, B. Billade, M. Dahlgren, L. Helldner, and R. Haas, "Sensitivity and antenna noise temperature analysis of the feed system for the Onsala twin telescopes," in *Proc. 23rd Eur. Very Long Baseline Interferometry Group Geodesy Astrometry*, Gothenburg, Sweden, 2017, pp. 10–14.

- [15] G. Cortes-Medellin, "MEMO 95 antenna noise temperature calculation," Nacional Astron. Atmos. Center, Cornell Univ., Ithaca, NY, USA, Tech. Rep., 2004. [Online]. Available: https://www.skatelescope.org/uploaded/6967_Memo_95.pdf
- [16] A. H. Akgiray, "New technologies driving decade-bandwidth radio astronomy: Quad-ridged flared horn and compound-semiconductor LNAs," Ph.D. dissertation, Dept. Elect. Eng., California Inst. Technol., Pasadena, CA, USA, 2013.
- [17] B. Petrachenko et al., "Design aspects of the VLBI2010 system— Progress report of the IVS VLBI2010 committee," NASA Goddard Space Flight Center, Greenbelt, MD, USA, Tech. Rep. NASA/TM-2009-214180, 2009.
- [18] R. Gawande and R. Bradley, "Towards an ultra wideband low noise active sinuous feed for next generation radio telescopes," *IEEE Trans. Antennas Propag.*, vol. 59, no. 6, pp. 1945–1953, Jun. 2011.
- [19] R. S. Gawande and R. F. Bradley, "Characterization of the active, inverted, conical sinuous antenna," in *Proc. 29th Gen. Assem. URSI*, Chicago, IL, USA, 2008, p. 1.
- [20] R. S. Gawande, "Ambient and cryogenic, decade bandwidth, low noise receiving system for radio astronomy using sinuous antenna," Ph.D. dissertation, Dept. Eng., Electron. Elect., Univ. Virginia, Charlottesville, VA, USA, 2011.
- [21] N. Steenkamp, D. I. L. de Villiers, and N. Mutonkole, "Wideband pyramidal sinuous antenna for reflector antenna applications," in *Proc.* 11th Eur. Conf. Antennas Propag. (EUCAP), Paris, France, Mar. 2017, pp. 2291–2295.
- [22] J. Dyson, "The unidirectional equiangular spiral antenna," *IRE Trans. Antennas Propag.*, vol. 7, no. 4, pp. 329–334, Oct. 1959.
- [23] J. Dyson, "The characteristics and design of the conical logspiral antenna," *IEEE Trans. Antennas Propag.*, vol. AP-13, no. 4, pp. 488–499, Jul. 1965.
- [24] HFSS. ANSYS Simulation Driven Product Development. Accessed: Mar. 20, 2019. [Online]. Available: https://www.ansys.com/
- [25] J.-P. Shang, D.-M. Fu, Y.-B. Deng, and S. Jiang, "Measurement of phase center for antenna with the method of moving reference point," in *Proc.* 8th Int. Symp. Antennas, Propag. EM Theory (ISAPE), Kunming, China, Nov. 2008, pp. 114–117.
- [26] P.-S. Kildal, "Combined E- and H-plane phase centers of antenna feeds," *IEEE Trans. Antennas Propag.*, vol. AP-31, no. 1, pp. 199–202, Jan. 1983.
- [27] P.-S. Kildal, "Factorization of the feed efficiency of paraboloids and Cassegrain antennas," *IEEE Trans. Antennas Propag.*, vol. 33, no. 8, pp. 903–908, Aug. 1985.
- [28] I. Martí-Vidal, A. Roy, J. Conway, and A. J. Zensus, "Calibration of mixed-polarization interferometric observations—Tools for the reduction of interferometric data from elements with linear and circular polarization receivers," *Astron. Astrophys.*, vol. 587, p. A143, Mar. 2016.
- [29] K. Das, "Conversion from linear to circular polarization in FPGA in real time," Ph.D. dissertation, Dept. Math. Natural Sci., Univ. Cologne, Cologne, Germany, Jun. 2013.
- [30] K. A. Abdalmalak et al., "Radio astronomy ultra wideband receiver covering the 2–14 GHz frequency band for VGOS applications," in Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), Davos, Switzerland, Apr. 2016, pp. 1–5.
- [31] K. A. Abdalmalak, S. L. Romano, L. E. G. Muñoz, and D. S. Vargas, "Dual polarized ultra wideband feed system for VLBI global observation system applications," in *Proc. Global Symp. Millim. Waves* (GSMM), ESA Workshop Millimetre-Wave Technol. Appl., Espoo, Finland, Jun. 2016, pp. 1–4.
- [32] K. A. Abdalmalak, G. S. Botello, S. L. Romano, L. E. G. Muñoz, and D. S. Vargas, "An updated version of the Dyson conical quad-spiral array (DYQSA) feed system for VGOS applications," in *Proc. IEEE Int. Symp. Antennas Propag., USNC/URSI Nat. Radio Sci. Meeting*, San Diego, CA, USA, Jul. 2017, pp. 1539–1540.
 [33] M. Pantaleev *et al.*, "Broadband feeds for VGOS," in *Proc. Int. VLBI*
- [33] M. Pantaleev et al., "Broadband feeds for VGOS," in Proc. Int. VLBI Service Geodesy Astrometry Gen. Meeting, D. Behrend, K. D. Baver, and K. L. Armstrong, Eds., Beijing, China, 2014, pp. 60–67.
- [34] A. Dunning, M. Bowen, M. Bourne, D. Hayman, and S. L. Smith, "An ultra-wideband dielectrically loaded quad-ridged feed horn for radio astronomy," in *Proc. IEEE-APS Top. Conf. Antennas Propag. Wireless Commun. (APWC)*, Turin, Italy, Sep. 2015, pp. 787–790.
- [35] 3D Systems Manufacturing. Accessed: Mar. 20, 2019. [Online]. Available: https://www.3dsystems.com/
- [36] A. A. Althuwayb et al., "3-D-printed dielectric resonator antenna arrays based on standing-wave feeding approach," *IEEE Anten*nas Wireless Propag. Lett., vol. 18, no. 10, pp. 2180–2183, Oct. 2019.

Kerlos Atia Abdalmalak (S'19) was born in Luxor, Egypt, in 1990. He received the B.Sc. degree (Hons.) (ranked second among the colleagues) in communication engineering from Aswan University, Aswan, Egypt, in 2011 and the M.Sc. degree (Hons.) in multimedia and communication from the Carlos III University of Madrid, Madrid, Spain, in 2015, where he is currently pursuing the Ph.D. degree with the Department of Signal Theory and Communications.

He joined the Department of Electrical Engineering, Aswan University, as a Teaching Assistant.

He has authored/coauthored eight JCR journals (four in the first quartile Q1 and three in the second quartile Q2 following Thomson Reuters Journal Citation Ranking) and 20 international conference articles. He has participated in five research projects financed by the Madrid Regional Ministry of Education, Ministry of Economy and Business, and Companies. His current interests include antennas and propagation, ultrawideband/multiband antennas, reflector/feed systems, radio astronomy receivers, THz technologies, whispering gallery mode resonators, and millimeter/submillimeter waves.

Mr. Abdalmalak served as a Peer-Reviewer/TPC Member in several JCR journals and international conferences, such as *Optics Express, International Journal of Infrared and Millimeter Waves* (IJIM), the European Conference on Antennas and Propagation (EuCAP), the International Conference on Innovative Trends in Computer Engineering (ITCE), the Asia Simulation Conference (AsiaSim), Communication Theory, Information Theory, Antennas and Propagation (CIAP), and the International Conference on Electrical, Electronic, Communication and Control Engineering (ICEECC). He received the Erasmus Mundus GreenIT Grant in 2014 and the Young Scientists Award (Second Prize) by URSI, Cartagena, Spain, in 2017.

Gabriel Santamar'ia Botello received the Electrical Engineering in Communications and Electronics degree from the Universidad de Carabobo, Valencia, Venezuela, in 2014. He is currently pursuing the Ph.D. degree with the Signal Theory and Communications Department, Carlos III University of Madrid, Madrid, Spain, where he has been working on the development of high-sensitivity THz receivers for radio astronomy applications.

His current research interests include THz technologies, nonlinear optics, and computational electromagnetics.

Sergio Llorente-Romano was born in Madrid, Spain, in 1977. He received the M.S. and Ph.D. degrees in telecommunication engineering from the Polytechnic University of Madrid, Madrid, Spain, in 2000 and 2009, respectively.

Since September 2009, he has been with the Radiofrequency, Electromagnetics, Microwaves and Antennas Group, Department of Signal and Communications Theory, Carlos III University of Madrid, Madrid, Spain. His current research activities and interests include numerical methods applied to elec-

tromagnetic problems related to the design of microwave devices.

Alejandro Rivera-Lavado was born in Madrid, Spain, in October 24, 1984. He received the Telecommunication Engineering degree and the Ph.D. degree from the Carlos III University of Madrid, Madrid, Spain, in 2010 and 2016, respectively.

His current research interests include dielectric lenses, ultrawideband terahertz antennas, and low-loss terahertz transmission lines.

Jonas Flygare (S'16) was born in Mölndal, Sweden, in 1988. He received the B.Sc. and M.Sc. degrees in engineering physics and the Licentiate degree from the Chalmers University of Technology, Gothenburg, Sweden, in 2016 and 2018, where he is currently pursuing the Ph.D. degree in radio and space science.

In 2012, he was a Test Technician in semiconductor research and development with CBRITE Inc., Goleta, CA, USA, where he was developing the thin-film-transistor technology for next-generation

flat screens. In 2014, he was with the Department of Electrical Engineering, Chalmers University of Technology, where he was working with the gap-waveguide technology. From 2014 to 2016, he was a Project Researcher with the Onsala Space Observatory, Swedish National Facility for Radio Astronomy, Gothenburg, where he was involved to design the feed antenna for the Square Kilometer Array (SKA) Band 1 in radio astronomy. His current research interests include design and system characterization of ultrawideband antennas and reflector feeds, low-noise amplifiers, phased arrays feeds, and receivers for radio and millimeter wave applications in radio astronomy.

Mr. Flygare received the TICRA Travel Grant by the IEEE APS/URSI, Boston, MA, USA, in 2018.

José Antonio López Fernández was born in Motril, Spain, in 1965. He received the Telecommunications Engineering degree from the Politechnical University of Madrid, Madrid, Spain, in 1989 and the Ph.D. degree from Joseph Fourier University, Grenoble, France, in 1994.

He started with a fellowship for the development of SIS radio astronomical receivers in 1989 at the Institute of Radioastronomie Millimetrique (IRAM), Saint-Martin-d'Héres, France. In 1992, he joined the Yebes Observatory, Madrid, as a Receiver Engineer.

From 2001 to 2017, he was the Head of the Technological Development Center (CDT), National Geographical Institute, Instituto Geográfico Nacional (IGN), Yebes Observatory. He was in charge for the construction, commissioning, and operation of the 40 m radio telescope in Yebes and also for the development of the 13.2 m radio telescopes of RAEGE (Atlantic Network of Geodynamic and Space Stations), a sub-network of VLBI Global Observing System (VGOS). He has been responsible for the construction of the receivers covering the frequency band from 2 to 120 GHz and currently in operation at the 40 m Yebes radio telescope. He was also in charge for the development of triband (S/X/Ka) and broadband (2–14 GHz) cryogenic receivers for the International VLBI Service (IVS) and VGOS. Since 2017, he has been the Deputy Director of Astronomy, Geophysics and Space Activities, IGN. His current research interests include development of radio astronomical receivers and the construction of radio telescopes.

José Manuel Serna Puente received the M.Sc. degree in radio communication engineering from the Universidad Politécnica de Madrid, Madrid, Spain, in 2002.

He is currently an Engineer with the Yebes Observatory, this facility is an ICTS (unique technical and scientific infrastructure) and belongs to the National Geographic Institute, Spain. He has authored/coauthored several publications related with his responsibilities in the observatory. His technical interests include radio astronomy engineering,

antenna measurement systems, radio astronomical cryogenic receivers, and space geodesy techniques.

Luis Emilio García-Castillo (M'93) was born in Madrid, Spain, in 1967. He received the Ingeniero de Telecomunicación and Ph.D. degrees from the Universidad Politécnica de Madrid, Madrid, in 1992 and 1998, respectively.

From 1997 to 2000, he was an Associate Professor with the Universidad Politécnica de Madrid. From 2000 to 2005, he was an Associate Professor with the Universidad de Alcalá, Madrid. Since 2005, he has been with the Department of Signal Theory and Communications, Carlos III University of Madrid,

Madrid, Spain. He has been the Principal Investigator of five projects of the National Plan of Research, Spain, one of the Regional Plan of Research, Madrid, and one with the American Air Force Office of Scientific Research, Arlington County, VA, USA. He has also participated in a number of projects and contracts financed by international, European, and national institutions and companies. He has authored one book, five contributions for chapters and articles in books, 45 articles in international journals, and over 100 articles in international conferences, symposiums, and workshops, plus a number of national publications and reports. His current research interests include application of numerical methods to high-performance computational electromagnetics including finite elements, hp adaptivity, hybrid methods, and domain decomposition methods.

Dr. García-Castillo received two prizes for his Ph.D. thesis from the Colegio Oficial Ingenieros de Telecomunicación, Madrid, and the Universidad Politécnica de Madrid.

Daniel Segovia-Vargas (M'98) was born in April 1968. He received the Telecommunications Engineering degree from the Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), UPM, in 1993 and the Ph.D. Telecommunications Engineering degree (cum laude) from ETSIT, UPM in 1998 by unanimity, award COIT-Ericsson, the best thesis in mobile communication.

From 1993 to 1998, he was an Assistant Professor with the Universidad de Valladolid, Valladolid, Spain. Since 1998, he has been a Professor with the

Carlos III University of Madrid (UC3M), Madrid, Spain. In 2001, he was an Associate Professor (Tenure) of signal theory and communications at the signals with the Carlos III University of Madrid, where he is teaching High-Frequency Microwave and Circuits and Antennas. From 2004 to 2010, he was the Head of telecommunications engineer with the Escuela Politécnica Superior, UC3M. Since 2012, he has been the Head of Escuela Politécnica Superior, Carlos III University of Madrid. In 2003, he was chaired the Group Radio frequency, Electromagnetics, Microwaves and Antennas at UC3M. He has been a Full Professor with the Carlos III University of Madrid since 2016. He has authored or coauthored more than 300 publications in scientific journals and international conferences (more than 80 in indexed international journals and more than 20 international invited conferences). He has been a Visiting Researcher with the Rutherford Appleton Laboratory. His current

research interests include antennas (antenna arrays and miniaturized antennas where he is currently leading a project with Airbus on antenna miniaturization for aircraft applications), active antennas, metamaterials, and technologies in THz frequencies.

Dr. Segovia-Vargas is a member of the AP-S Society from 1998 and MTT-S Society from 2001. He has been the Treasurer of the European Microwave Conference since 2018. He was the President and Organizer of URSI2011 and member of the Organizing Committee of EuCAP 2010 (where he was the Awards Committee) and on the future EuCAP 2022, he has organized several international workshops in the domain of metamaterials y technologies of THz. He has been National Delegate for the European Cost Actions in the antennas field (Cost 284, Cost IC0603, and Cost IC1102) since 2002. He has been the Treasurer of the EuMW 2018. He has chaired more than 70 research and development projects, both public and private.

Miroslav Pantaleev received the M.Sc. degree in radio communications from Sofia Technical University, Sofia, Bulgaria, in 1995 and the M.Sc. degree in digital communications and the Ph.D. degree from the Chalmers University of Technology, Gothenburg, Sweden, in 2000 and 2006, respectively.

From 2006 to 2018, he was the Leader of the Electronics Laboratory, Onsala Space Observatory, Swedish National Facility for Radio Astronomy, Gothenburg. During this period, he was involved in the development of millimeter-wave receivers for

applications in radio astronomy and space sciences. Instruments designed by him are currently in operation at the Atacama Pathfinder Experiment Telescope and Onsala Space Observatory, Onsala, Sweden. Since 2012, he has been leading the Swedish technical involvement in the Square Kilometer Project (SKA). His team delivered the design and the prototype of one of the receivers to be installed on the 15 m reflector antennas of the SKA telescope. Since 2018, he has been with RUAG Space, Zürich, Switzerland, where he works as the Team Leader for the Electrical Engineering Group. His current research interests include space electronics and antennas.

Luis Enrique García-Muñoz is currently a Full Professor with the Carlos III University of Madrid, Madrid, Spain. He has managed or participated in several national and European research projects on areas, such as antennas and array design. He has coauthored 63 articles in international journals and holds four patents. His current research interests include mm and sub-mm antennas, and arrays and radio astronomy instrumentation.